
LA-UR-21-23497
Approved for public release; distribution is unlimited.

Title: Comparing Emulation Methods for Computer Models with High Dimensional
Output

Author(s): Hutchings, Grant Christian
Sanso, Bruno
Gattiker, James R.
Francom, Devin Craig
Pasqualini, Donatella

Intended for: Report

Issued: 2021-04-12

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Comparing Emulation Methods for Computer

Models with High Dimensional Output

Grant Hutchings, Bruno Sansó, Devin Francom,

James Gattiker, and Donatella Pasqualini

April 5, 2021

Abstract

This Master’s Capstone project will present a comparison of statistical mod-

els for computer simulation studies. The four models included in this com-

parison study were chosen for both their proven and diverse methodologies.

We will present a case study on hurricane flood data in the Delaware bay

which highlights the strengths and weaknesses of each model when applied to

a very large spatial field. As computers have gotten faster, we have become

interested in modeling increasingly large spatial fields in both size and reso-

lution. Statistical algorithms that are able to efficiently handle these fields

have never been more important. We therefore find this comparison to be

extremely topical.

i

Contents

1 Introduction 1

2 Emulation Methods 2

3 Data 3

4 Model Formulation 6

4.1 Simulation Enabled Prediction and Inference (SEPIA) 7

4.2 Bayesian Adaptive Spline Surfaces (BASS) 8

4.3 Bayesian Additive Regression Trees (BART) 8

4.4 Robust Gaussian Stochastic Process Emulation (RobustGaSP) 10

5 Comparison Study 11

5.1 Predictive Accuracy . 12

5.1.1 RMSE . 12

5.1.2 Inundation . 13

5.2 Computational Feasibility . 17

6 Sensitivity Analysis 20

6.1 BASS . 21

6.2 SEPIA . 21

6.3 BART . 21

6.4 RobustGaSP . 23

7 Discussion 26

8 Appendix 29

ii

1 Introduction

A major challenge in the study of complex physical systems is acquiring

sufficient experimental data. Experiments are often expensive, and in many

fields, data are limited by the occurrence of natural phenomena. Suppose

we wish to understand how a complicated system depends on a number of

parameters (inputs). If we define the range of all possible parameter values

to be the parameter space, then experimental data is limited by the cost and

feasibility of gathering data at any point in the parameter space. If the space

is large, an exhaustive search becomes quickly infeasible.

Scientists have turned to simulation as a way to overcome these chal-

lenges. Leveraging theoretical knowledge along with available experimental

data has led to accurate and reasonably fast computer simulations. Unlike

experiment, simulators are not burdened by physical limitations and can be

used to explore the system much more efficiently. Computer simulations do

not however solve the experimental data problem completely. Depending on

the system of interest, simulations can take hours or even days to run at each

point in the parameter space making a reasonably exhaustive search of the

space once again infeasible. Additionally, simulators are often deterministic,

which is a major limitation as uncertainty quantification is very desirable.

Statistical models of these computer simulations, referred to interchangeably

here as emulators or surrogate models, are designed to solve these problems.

They should be very fast and often default to Bayesian methods which pro-

vide straightforward uncertainty quantification.

The analysis presented here will compare four emulation methods on hur-

ricane flooding data in the Delaware Bay. These data exhibit some of the

challenges mentioned above in that hurricane flood data is not easily gathered

at high spatial resolution, and is completely limited by the number and type

of hurricanes that make landfall. Simulated data allows researchers to learn

about hurricane flood risk on an accelerated timeline and explore hurricanes

with any set of parameters. The emulation methods we have chosen imple-

ment very different statistical models, all of which have been proven them-

selves a reasonable choice for similarly structured spatial data. The goals

1

of this comparison study are to quantify the accuracy of predictions, under-

stand the computational requirements, and compare the sensitivity analysis

options given by each method. Sensitivity analysis is important in this prob-

lem because researchers are very interested in understanding which hurricane

parameters are most influential for determining inland flooding. Some kinds

of sensitivity analysis allow priors to be specified for those parameters, and

prior specific sensitives to be compared. In Section 2 we will give a brief

overview of the methods included in our study and explain why they were

chosen.

2 Emulation Methods

Simulation Enabled Prediction and Inference (SEPIA) (Gattiker et al., 2020b)

implements the Gaussian Process model described in Higdon et al. (2008).

This model was originally implemented at Los Alamos National Laboratory

as the MATLAB code GPMSA (Gattiker et al., 2020a) and in 2020 was refur-

bished and translated to python. SEPIA makes use of a basis representation

of the data to fit a Gaussian Processes (GP) to each of the basis coefficients.

This is a tried and true methodology for spatial modeling that has seen much

success in the literature.

Our implementation of Bayesian Adaptive Spline Surfaces (BASS) (Fran-

com and Sansó, 2020) similarly makes use of a basis representation, but takes

a wholly different approach to modeling basis coefficients. Rather than using

GP’s, adaptive splines are used. BASS has been recently applied to large

spatial data from computer experiments and has shown great results (see,

for example, Francom et al., 2019).

The implementation considered in this work of Bayesian Additive Regres-

sion Trees (BART), developed in Sparapani et al. (2021), once again makes

use of a basis representation. Basis coefficients are fit using an additive re-

gression tree model. Treed models have seen success in the literature for their

speed and flexibility, and BART has proven to be effective in similar settings

such as a recent analysis of airborne particulate data over California (Zhang

2

et al., 2020). BART was also compared to BASS in Francom et al. (2019)

and was shown to be very comparable.

The fourth method considered in this work consists of Robust Gaussian

Stochastic Process Emulation (RobustGaSP) (Gu et al., 2017) which provides

a way to circumvent the basis decomposition by fitting a GP to each point in

space. This is made computationally feasible by both parallel computation,

and the assumption of shared range parameters for all GP’s. RobustGaSP

does not make use of MCMC for model fitting like the other three models.

Instead parameters are fit using numerical optimization of marginal posterior

distributions. These major model differences make this an interesting inclu-

sion to our comparison study. RobustGaSP has also shown promising results

on large scale computer model emulation of large volcanic flow simulations

(Gu and Berger, 2016).

These models were chosen because they have all been shown to produce

accurate inference using quite different methodologies. We will give a more

detailed description of each model in Section 4 and then compare them on

simulated hurricane flooding data in the Delaware Bay in Section 5. The

goal of this comparison is to highlight the strengths and weaknesses of each

model formulation (and implementation) in a big data setting. We are in-

terested in how predictions from these models compare in terms of classical

statistical measures of accuracy such as root mean squared error (RMSE),

but also application specific measures of flooding which can be used to better

understand hurricane induced flood risk in the Delaware Bay.

3 Data

The Sea, Lake and Overland Surges from Hurricanes (SLOSH) simulator is a

computer code developed by the National Weather Service to estimate storm

surge heights from hurricanes. Storm surge height is defined as the maximum

water height due to the hurricane at any single location. Our data consists

of an ensemble of 4,000 runs from the SLOSH simulator. Each storm in

the ensemble is defined by a unique set of input parameters: sea level rise,

3

heading, velocity, minimum air pressure, and latitude. Figure 1 presents a

spatial map of one of these runs.

Figure 1: SLOSH output

Input parameters for the ensemble were determined using a uniform Latin

hypercube design over the parameter space. Models are trained on a subset

of this ensemble and tested on storms outside of the training set. Below we

show the parameter space for a training set of 500 storms and its associated 50

storm testing set. We can see that the parameters are uniformly distributed

over their domains.

One output from SLOSH is a 4,520×5,115 grid with the storm surge

height at each of these 23,119,800 locations. If we ignore the curvature of

the Earth, we have a spatial resolution of approximately 0.06 mi lat x 0.05

4

slr

20
0

30
0

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

● ●● ●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

● ●

●
●

● ●

●● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

93
0

95
0

97
0

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 100 300

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●
●

●●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

● ●

200 300

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

theta

●

●

●

●●

●

●

●

●
● ●

●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●
●

●
●

●

●

● ●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

● ●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●
●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●

● ●●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

● ●

●
●

●●

● ●●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

v

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 10 20 30 40

●

●

●
●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

● ●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

930 950 970

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●

● ●●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

● ●

●
●

●●

● ● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

pmin

●

●

●
●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ● ●

●●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●
●

●●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●●

0
10
0

30
0

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

● ●●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

● ●

●
●

●●

●● ●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

0
10

20
30

40

●

●

●

●●

●

●

●

●
● ●

● ●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

38.4 38.8 39.2

38
.4

38
.8

39
.2

lat

training set

(a) 500 storm training set

slr

20
0

30
0

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

94
0

96
0

98
0

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 300

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

200 300

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

theta

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

v

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

940 960 980

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

pmin

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

0
10
0

30
0●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

0
10

20
30

40

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

38.4 38.8 39.2

38
.4

38
.8

39
.2

lat

testing set

(b) 50 storm testing set

Figure 2: Pairs plot of input parameters

mi long. This many spatial locations present a formidable computational

challenge. This is fortunately eased by the fact that the majority of the

points are far enough inland that there is no flooding for any of the 4,000

simulations. By modeling only cells which take non-zero values in at least

one of the simulations we reduce the size of the field to 3,500,000 locations.

Accurate prediction of flooding is important for a variety of reasons in-

cluding displacement of residents, and property/infrastructure damage. One

area of specific interest for this project is flood prediction near power sta-

tions, which are displayed as black dots in Figure 1. A storm surge of four

feet or higher is considered catastrophic for a power station. We are inter-

ested in the emulators’ ability to accurately predict a surge height of greater

than four feet, as this information is very valuable for determining if a power

station should preemptively shut down due to an approaching storm.

5

4 Model Formulation

Computer model emulators have many desirable properties, perhaps the most

notable being accurate out of sample prediction. But accuracy is not every-

thing, we care about other aspects of the model such as computational com-

plexity. Surrogate models should be faster than the simulator itself. If this is

not the case, we may only be gaining uncertainty quantification by choosing

emulation over simulation. Our goal here is to compare four very different

emulation methods on the grounds of predictive accuracy and computational

complexity. We will explain the pro’s and con’s of each model and present

results from our case study to quantify the differences between the models.

The main challenge in modeling this data is the size. Our emulator must

be able to handle 4,000 runs from SLOSH, each with 3,500,000 response

values. One very common approach to reduce the dimension of a problem

like this is to decompose the data into principal components using a singular

value decomposition.

Let m be the number of storms in the ensemble, and k the number of spa-

tial locations. Then we can define s = {s1, ..., sk} to be the set of locations,

and X ∈ Rm×p the matrix of input parameters where p is the dimension of

the inputs.

Then the response Y (X, s) ∈ Rm×k is approximated as

Y (X, s) ≈W (X)B(s) (1)

where B(s) ∈ RJ×k is a matrix of basis vectors where each of the J rows

corresponds to a basis vector for the j
′th principal component j = 1, 2, . . . , J .

Each element in that row corresponds to one of the k spatial locations.

W (x) ∈ Rm×J is a matrix of basis vector coefficients where each of the

J columns holds the m basis coefficients for the principal components. The

expended form of Equation (1) is
y11 y12 . . . y1k

y21 y22
...

...
. . .

ym1 . . . ymk

 ≈

w11 w12 . . . w1J

w21 w22
...

...
. . .

wm1 . . . wmJ



b11 b12 . . . b1k

b21 b22
...

...
. . .

bJ1 . . . bJk

 (2)

6

For the purposes of modeling, W (X) determined by the decomposition

become the new response values, taking the place of the original response

Y (X, s) with the spatial information contained in B(s). An emulator mod-

eling W (X) is completely ignorant of the original response Y (X, s) and the

target of inference is to determine J basis coefficient functionals wj(x) using

the m response values for each j.

J determines the accuracy of our approximation to Y , and is usually

chosen so that a fixed percentage of the variation in the data is accounted for

by the decomposition. For this SLOSH ensemble, we are able to represent

99% of the variance using only 25 basis vectors. That means we are fitting

25 uni-variate models rather than one model with a 3,500,000 dimensional

response, a significant reduction in complexity. This approach makes models

like Gaussian Process which scale O(n3), far more feasible, which will be

made clear in Section 5.2 when we look at model fit times.

For emulators making use of this decomposition, we will assume the data

to be mean zero as it is centered and scaled prior to determining the principal

component decomposition. We will now give a more detailed description of

each emulator.

4.1 Simulation Enabled Prediction and Inference (SEPIA)

SEPIA is a python code developed by Jim Gattiker, Natalie Klein, Grant

Hutchings and Earl Lawrence at Los Alamos National Lab and implements

the model described in Higdon et al. (2008). By utilizing the decomposition

in Equation (1) a Gaussian Process is fit to each basis function coefficient

wj(x) where x is any set of input parameters.

wj(x) ∼ GP (0, σ2
jC(x,x′|φj)) (3)

Where σ2
j is the marginal variance, and C(x,x′|φj) the covariance matrix

defined for the vector of correlation distances φj. Independent Gamma and

Beta priors are given to the marginal variances and correlation distances

respectively. Given σ2
j and φj a zero mean normal prior is defined for each

wj. For a full model specification including hyperpriors, refer to Higdon et al.

7

(2008). The resulting posterior distributions are explored via MCMC. This

methodology is frequently used at Los Alamos National Lab for surrogate

modeling.

4.2 Bayesian Adaptive Spline Surfaces (BASS)

BASS was developed by Devin Francom at UCSC as part of his PhD Thesis

with Bruno Sansó. The following model formulation outline was taken from

Francom and Sansó (2020). Similar to SEPIA, BASS makes use of a basis

representation to handle large amounts of data. BASS models each wj as

wj(x) = a0 +
M∑
m=1

amZm(x) (4)

where a0, a1, ..., aM are constants and Z1, ..., ZM are basis functions learned

from the data. The basis functions have the form

Zm(x) = max(0,
Km∏
k=1

gkm[skm(xvkm − tkm)]α) (5)

where skm ∈ {−1, 1} is the sign, tkm ∈ [0, 1] is a knot, vkm selects a covariate,

Km is the degree of interaction and gkm = [(skm+1)/2−skmtkm]α is a constant

that makes the basis function have a maximum of one. The exponent α

defines the degree of the polynomial splines. Note that variables can only be

used once in each basis function.

To fit this model we need to estimate θ = {σ2,M,a,K, s, t,v}. This is

done via a reversible jump MCMC algorithm. For specifics on priors and the

RJMCMC algorithm see Francom and Sansó (2020).

4.3 Bayesian Additive Regression Trees (BART)

Tree models, such as Treed GP (Gramacy and Lee, 2008) have proven to

be fast, flexible, and accurate for computer emulation problems. BART is a

treed model that has been very reliable in other case studies of this nature.

Recently, BART was found to be very effective for the spatial modeling of

8

Ambient fine particulate matter pollution (PM 2.5) over California (Zhang

et al., 2020). As detailed in Chipman et al. (2010), BART is a sum of trees

model where scalar output wj(x) is approximated as

wj(x) =
I∑
i=1

g(x|Ti,Mi) + ε, ε ∼ N(0, σ2) (6)

where each Ti is a regression tree and x is a p dimensional vector of in-

puts x = (x1, ..., xp). Each tree can incorporate one or more of the p in-

puts, corresponding to main and interaction effects. Each tree node has

a binary decision rule to determine whether parameter {θ ∈ A} or θ /∈ A.

Mi = {θ̂1i, ..., θ̂bi} represents the set of b terminal node parameter estimates.

The function g maps {θ̂1i, ..., θ̂bi} ∈Mi to x.

This additive structure endows BART with a high amount of flexibility

when the number of trees is large. This does however come at the price of

complexity. BART needs to estimate {(T1,M1), ..., (TI ,MI), σ} for I trees

where Ti and Mi are not single parameters, but an entire tree structure fit

with a set of decision rules, and a set of terminal nodes respectively.

BART utilizes a backfitting MCMC algorithm for posterior sampling

where all parameters are gibbsable. This is key for keeping computation

time down as the number of parameters scales. The flexibility BART can

provide is therefore very desirable as the additional computational cost is

reasonably low. The key to enforcing this flexibility is a regularization prior

which forces the effect from each tree to be small. This prevents individual

tree effects from dominating the additive structure.

With posterior draws (T ∗1 ,M
∗
1), ..., (T ∗I ,M

∗
I) prediction is straightforward,

f ∗(·) =
I∑
i=1

g(·|T ∗i ,M∗
i) (7)

(Sparapani et al., 2021).

9

4.4 Robust Gaussian Stochastic Process Emulation (Ro-

bustGaSP)

RobustGaSP was developed by Mengyang Gu as part of his PhD thesis

at Duke. Unlike the other three methods, parameters are estimated using

marginal likelihood optimization rather than MCMC. This has its drawbacks

when it comes to uncertainty quantification as confidence bounds must be

estimated using distributional assumptions, but MCMC has many challenges

which are avoided using this approach.

RobustGaSP implements a computationally feasibly alternative to the

Many Single (MS) emulation approach (Conti and O’Hagan, 2010; Lee et al.,

2011, 2012). Individual emulators are fit to each coordinate, which in the

context of our case study means 3,500,000 individual Gaussian Process em-

ulators. Each emulator has its own mean function and variance, but they all

share range parameters γ, which are estimated from the joint likelihood of

all emulators (Gu and Berger, 2016).

Using our previous notation, define m runs of the simulator output at k

locations to be Y (X, s) where X is the matrix of input parameters. Then

yi(x) ∼ GP (µ(x), σ2c(x,x′)), ; i = 1, ..., k (8)

where µ(x) is a mean function, σ2 is the variance, and c(x,x′) is the corre-

lation function. Then for each location we have a multivariate likelihood(
yi(x1), ..., yi(xm)|µ, σ2,Σ

)
∼MVN

(
(µx1 , ..., µxm), σ2Σ

)
(9)

The mean function is modelled as a simple linear regression with parameters

θ and prior

π(θ, σ2) ∝ 1

σ2
(10)

A key to this model is the jointly robust (JR) prior applied to the range

parameters γ = {γ1, ..., γp} where p is the dimension of the input parameter

vector. This prior was introduced in Gu (2018) and is called jointly robust

because is cannot be written as the product of marginal priors and its robust

in marginal posterior mode estimation.

10

First consider reparameterizing to the inverse range parameters β = 1/γ.

Then the JR prior is defined as

πJR(β1, ..., βp) = C0

(p∑
l=1

Clβl

)α
exp

{
− b
(p∑

l=1

Clβl

)}
, (11)

where C0 =
(p−1)!ba+p

∏p
l=1 Cl

Γ(a+p)
, a > −(p+ 1), b > 0 and Cl > 0 are parameters.

As we will discuss in Section 6, this prior facilitates the form of sensitivity

analysis provided by the package.

The posterior distribution resulting from this model formulation is marginally

optimized to obtain parameter estimates.

5 Comparison Study

We will compare these emulators in terms of their predictive accuracy as well

as computational feasibility when applied to the 4000 run ensemble of hur-

ricane flooding data from SLOSH. Computation time for each emulator will

generally be a function of training set size, but will vary between emulators

as each algorithm has different scaling properties. We would like to be able

to train our models with as few storms as possible. This not only means min-

imal computation time, but also leaves more holdout storms for validation of

the model. We consider seven different training set sizes; 50, 100, 500, 1000,

1750, 2500, and 3636 storms. 3636 was chosen as the largest training set

size because it is the largest number that permits a testing set size of 10%

(364 testing storms). Training and testing storms were selected as follows;

First, randomly select 3,636 storms from the 4000 as our master training set,

leaving 364 as our master testing set. For each smaller training and testing

set we choose storms randomly from the master sets. For example, to build a

training set of 100 storms, we randomly draw 100 storms from the set of 3636

training storms, then draw the associated 10 testing storms from the master

testing set of 364 storms. Our comparison study involves training each of

the four emulators on each of the training sets, and computing all prediction

metrics for each testing set. This will allow us to determine optimal training

set size, and compare emulators both within and between training set size.

11

BASS, BART, and SEPIA all make use of MCMC for parameter estima-

tion. For each model we collect 10,000 MCMC samples and burn the first

9000 leaving 1000 available for prediction. Given the size of the spatial field,

we were forced to thin these 1000 samples down to 50 due to memory con-

straints on our computing resources. Consider our largest testing set of 364

storms and suppose we wish to generate predictions using all 1000 posterior

samples. This requires a matrix of size (364 × 3,500,000 × 1000). In R, a

double precision value requires 8 bytes. A matrix of this size requires approx-

imately 10 terabytes of storage. We are therefore limited to a more modest

500 gigabyte matrix resulting from the use of 50 MCMC samples. This is

one of the challenges that comes with a data-set of this size. One possible

way to use more samples for prediction, which we do not consider here, is to

limit the area of interest for prediction to a subset of the spatial field. For

example we could look at only cells surrounding power stations, or simply

only look at small swaths of land one at a time.

5.1 Predictive Accuracy

This comparison will make use of raw predictions of storm surge height as

well as other metrics of inundation (flooding). For our uses inundation will

refer to the area of catastrophic flooding, defined as the number of land

locations with more than 4 feet of flood water, as well as the associated flood

volume. Flood volume is computed as the sum of water heights over all

catastrophically flooded locations. We will present results for the root mean

squared errors (RMSE) as well as summaries of area and volume predictions

compared to values from the holdout set.

5.1.1 RMSE

There are two relevant questions associated with RMSE; first, are there any

consistent trends among the simulators independent of training set size? And

second, is it necessary to train a model on all 3,636 storms to achieve good

performance? We will use Figure 3 to attempt to answer these questions. The

figure shows boxplots of RMSE for each emulation method at each training

12

set size at which they were run. Each individual RMSE value is for one

storm in the out of sample testing set and is computed using the mean

over samples from the posterior predictive distributions. Notice that the

maximum training set size for SEPIA and RobustGaSP are 1000 and 500

respectively. This is due to computational limitations which will be described

in Subsection 5.2.

We would like to highlight a few things from Figure 3. As expected,

RMSE is generally decreasing with training set size. It is important to note

that this decrease suffers from diminishing returns. It would appear that

a training set size of greater than 1000 runs is unnecessary to achieve near

optimal RMSE.

The other thing we notice is that the differences between emulators at

each training set size is not extreme. Differences are more extreme in smaller

training sets, but with increasing set size, emulators seem to be producing

very similar RMSE’s. Assuming we would choose at least 500 training storms,

all of the emulators give similar results. It is harder to make conclusions

regarding the differences at set sizes of 50 and 100 as differences between the

emulators may be in part due to the relatively small testing sets.

5.1.2 Inundation

Inundation, or flooding, will be measured using both the area and volume of

catastrophic flooding. Area is simply the total number of land cells with a

water level greater than 4 feet, and volume is the sum of the water levels for

these cells. We limit our predictions to land locations as these metrics are

irrelevant at sea.

We compare models trained on 500 storms as we have data for all the

emulators at this level. Looking at Figures 4, and 5 each ’test storm id’

on the x-axis is one storm from the testing set and the y-axis represents

flood area (volume) with red dots to indicate true data values. We see that

predictions are generally quite good, and interestingly the emulators tend

to over or under-predict the same storms. This could be an indication that

certain points in the parameter space are hard to emulate regardless of which

13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

0.3

0.6

0.9

50 100 500 1000 1750 2500 3636
training size

R
M

S
E

emulator

bart

bass

rgasp

sepia

Figure 3: RMSE by training set size

method you choose. We also note that RobustGaSP is more likely to cover

the true data value, but this is due to the fact that it estimates very large

uncertainty compared to the other models. Figures 13, 14, 15, and 16 in the

Appendix show similar plots for training set sizes of 1000 and 3636.

Figures 4, and 4 present information on the level of individual storms.

Figures 6, and 7 show the RMSE for area and volume predictions over all

testing storms. The RMSE for the area predictions is presented on the log

scale so that differences between the emulators can be seen more clearly.

We notice that RobustGaSP seems to do worse when we look at RMSE

14

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1750000

1800000

1850000

1900000

1 11 17 22 30 33 39 44 50 6
test storm id

ar
ea

em
●

●

●

●

rgasp

sepia

bass

bart

500 training storms

Figure 4: Flood area predictions for models fit to 500 storms. Dark red dots

indicate true flood area from SLOSH.

than when we look at raw predictions. For raw predictions, RobustGaSP has

mean area and volume predictions are very comparable and sometimes better

the other emulators. The poor RMSE results occur because the prediction

intervals are so wide. The mean error is pulled up due to the conservative

upper and lower bounds on the predictions.

BASS is consistently very good with surprisingly good results for small

15

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4e+06

6e+06

8e+06

1e+07

1 11 17 22 30 33 39 44 50 6
test_storm_id

vo
lu

m
e

em
●

●

●

●

rgasp

sepia

bass

bart

500 training storms

Figure 5: Flood volume predictions for models fit to 500 storms. Dark red

dots indicate true flood volume from SLOSH.

training sizes. Similar to RMSE for surge height predictions, we see dimin-

ishing returns when it comes to training set size and RMSE reduction. It

seems that a training set of 1000 storms is sufficient.

16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

8

10

12

50 100 500 1000 1750 2500 3636
training size

lo
g

Ar
ea

 R
M

SE

em
rgasp

sepia

bass

bart

Figure 6: Area prediction RMSE on log scale.

5.2 Computational Feasibility

Computation time is an important aspect of any comparison of emulation

methods especially on large data sets where some methods are simply not

feasible. SLOSH takes about eight minutes per storm to run, which is not

especially long for a simulator. Computation time for an emulator is therefore

very important in this case study. All of our models were built on a Los

Alamos compute cluster 1.5TB node with 96 cores, 2 Xeon Platinum 8260

17

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

500000

1000000

1500000

50 100 500 1000 1750 2500 3636
training size

Vo
lu

m
e

R
M

SE

em
rgasp

sepia

bass

bart

Figure 7: Volume prediction RMSE.

CPUs @ 2.40GHz, and 192GB of Dynamic RAM. Jobs on this node are

limited to 48 hours.

What we found is that BASS remains quite fast, even with the full training

set size of 3,636 storms. With this training set it takes only 34 seconds to fit

the model. BART is also reasonably fast at 318 seconds. BASS and BART

remain fast as the training set size increases because they scale approximately

linearly.

18

2.5

5.0

7.5

10.0

50 100 500 1000 1750 2500 3636
training size

lo
g

m
od

el
 fi

t t
im

e
(s

)

em
rgasp

sepia

bass

bart

Figure 8: Model fit time

SEPIA and RobustGaSP do not share this linear scaling. Both methods

make use of Gaussian Process which is limited by O(n3) scaling. Given our

48 hour time limit we were only able to fit SEPIA with a maximum training

set size of 1000 storms, which took nearly the full 48 hours. It should be

mentioned that one of the reasons for this is that SEPIA’s parallel MCMC

algorithm is currently still under development. However, even if we make

use of an embarrassingly parallel MCMC and split our MCMC up into say

19

10 chains, reducing computation time by an order of magnitude, we will still

never be able to compete with BASS and BART.

For RobustGaSP we are limited to 500 storms, again reaching our time

limit of 48 hours. We should not be too surprised that RobustGaSP is the

slowest of the four methods given the scope of the optimization problem it

attempts to tackle; fitting 3,500,000 Gaussian Processes.

Fortunately for RobustGaSP and SEPIA, we believe that 3,636 training

storms is not necessary to achieve near optimal prediction. We have seen

that RMSE for surge height, flood area, and flood volume all level off around

1000 training storms.

6 Sensitivity Analysis

Sensitivity analysis in computer models consists of determining which inputs

have the greatest (least) effect on the response. Quantifying the percentage of

the variability in the response due to each input is done through functional

analysis of variance (ANOVA) (Gu, 2018). Sobol indices, computed using

draws from the posterior predictive distribution, provide this information

(Sobol, 2001). An additional, very desirable property of Sobol indices is that

different priors can be considered for the model inputs and sensitivities can

be compared across these prior assumptions. This is very applicable to our

case study as hurricane priors are location specific, and are not unanimously

agreed upon.

SEPIA and BASS have built in functionality to compute these indices,

BART and RobustGaSP do not. Methods for computing Sobol indices have

been generalized in the R package ’sensitivity’ (Iooss and Pujol, 2021), so

in theory sensitivity indices are available for all four models. However, the

sensitivity package requires multiple draws from the predictive distribution.

RobustGaSP does not have this functionality available to the user. One

would need to use the parameter estimates from the model to manually sim-

ulate realizations from the Gaussian Processes which is a drawback of the

implementation. Rather than do that, we will describe the form of sensitivity

20

analysis that RobustGaSP has built in. BART has a uniquely different chal-

lenge in terms of a Sobol decomposition. Since we are fitting and combining

uni-variate BART models on the basis coefficients, the sensitivity package

will only provide sensitivity for the basis coefficients, not the original re-

sponse. We cannot simply aggregate these results into an overall sensitivity.

In the following Subsections we will detail the sensitivity analysis provided

by each emulator.

6.1 BASS

As we mentioned, BASS provides us with Sobol indices. In Figure 9 we plot

main effect Sobol indices colored by the square root of the explained variance.

We can see that sea level rise explains most of the variation in the data. We

also see that velocity is most important at the northern opening to the bay,

and has a reasonable effect all along the northern coast.

We can also get sensitivity indices for interaction effects. Below we plot

two example interaction effects. We can see that interactions between sea

level rise and minimum pressure play an important role in the furthest inland

flooding. As our goal here is not to analyze these sensitivities, rather to

demonstrate the information provided by the Sobol decomposition, we used

simple uniform priors over the input parameters.

6.2 SEPIA

SEPIA also has built in functionality for computing Sobol indices which

provides sensitivities for the original response, not just the basis coefficients.

Unfortunately, we found the implementation unable to handle data of this

size.

6.3 BART

BART offers a unique form of sensitivity analysis by keeping track of the

number of times each input variable shows up in a regression tree. For every

posterior predictive sample, we calculate the percentage of trees containing

21

sea level rise heading

velocity min pressure

0.0

0.2

0.4

0.6

0.8

1.0

sq
rt

va
ria

nc
e

ex
pl

ai
ne

d

Figure 9: BASS: Main effects sensitivity analysis

each input variable. This gives a distribution of percentages over posterior

draws. The drawback is that information is only available for individual

models corresponding to a single principal components coefficient. We cannot

simply aggregate over components to get sensitivity for the original response.

As an example of why this would not be informative, consider that the last

principal component accounts for a very small percentage of the variance in

the response. We should not consider frequencies of input variables from this

component to be nearly as important as those from the first few components.

This kind of sensitivity is therefore more useful when only a single BART

22

0.0

0.2

0.4

0.6

0.8

1.0

sq
rt

va
ria

nc
e

ex
pl

ai
ne

d

sea level rise
x

min pressure

(a) Sea Level Rise x Minimum Pressure

0.0

0.2

0.4

0.6

0.8

1.0

sq
rt

va
ria

nc
e

ex
pl

ai
ne

d

heading
x

latitude

(b) Heading x Landfall Location

Figure 10: BASS - Interaction effects

model is being considered to represent the response. Figure 11 shows these

distributions for the first four principal components. What we see is that

Sea level rise (slr) is the dominant input for the first principal component,

which accounts for the most variability in the data. These plots may be

more useful when combined with visualizations of the principal components.

Notice that heading (theta) appears to be very important in both PC2 and

PC3. If we look at these principal components in Figure 12 we notice that

they explain variability mostly near the coast with PC2 capturing variability

inside the bay, and PC3 on the coast between 39 and 40 degrees latitude.

Combining information from these figures gives us an idea of the locations

in space where heading is an especially important input. We do not show

PC1 simply because it is completely dominated by sea level and shows no

interesting structure.

6.4 RobustGaSP

RobustGaSP determines if an input is believed to be inert, or contributes lit-

tle to response variability. Inertness is decided through the estimated range

parameters γ̂. This method of variable selection was introduced in (Linklet-

23

slr theta v pmin lat

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P
er

ce
nt

 o
f T

re
es

PC 1

slr theta v pmin lat

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC 2

slr theta v pmin lat

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P
er

ce
nt

 o
f T

re
es

PC 3

slr theta v pmin lat

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

PC 4

Figure 11: BART: Percentage of trees containing each input variable. Dis-

tributions over posterior predictive draws.

ter et al., 2006). If γl is inert, γ̂l →∞ and has little effect response variability

(Gu, 2018). The JR prior we described in Section 4.4 is required for this to

work. The key is that this prior, unlike the reference prior, makes sure the

marginal posterior for γ > 0 even if some γ̂l → ∞. To decide whether a

γ̂l is sufficiently large to consider the associated input inert, we consider the

normalized inverse

P̂l =
Clβ̂l∑px
i=1 Ciβ̂i

(12)

24

−76.0 −75.5 −75.0 −74.5 −74.0

39
.0

39
.5

40
.0

40
.5

−100

−50

0

50

100

(a) principal Component 2

−76.0 −75.5 −75.0 −74.5 −74.0
39
.0

39
.5

40
.0

40
.5

−50

0

50

(b) principal Component 3

Figure 12: principal Components Spatially

where βl = 1/γl and Cl is a normalization constant to account for the different

scales of the inputs (Gu, 2018). We can then set a threshold (default 0.1)

below which an input is determined to be inert. Table 1 shows the results

for our storm surge analysis. We see that none of the inputs are found to be

inert.

Table 1: Estimated normalized inverse range parameters

sea level rise heading velocity min pressure latitude

0.7205615 2.2591919 0.9885197 0.5257090 0.5060178

Albeit far less informative from a sensitivity analysis point of view than

a Sobol decomposition, this is valuable information which comes for free as

a byproduct of the model fit.

25

7 Discussion

Computer model emulation is most beneficial when applied to simulator that

is especially expensive to run. While the SLOSH simulator is not especially

expensive, we do not believe this to diminish this comparison of methods

presented here. There exist hurricane simulators that are far more complex

but provide similarly structured flooding data to SLOSH. It is reasonable to

assume that a comparison of these emulators on similar data from a more

complex simulator would produce similar results. Additionally, a simulator

like SLOSH allows us to generate a large ensemble, which makes our compar-

ison of model fits by training set size possible. We can apply the knowledge

gained from this study to more expensive simulators in that an ensemble of

more than 1000 runs is likely unnecessary to achieve near optimal predictive

performance.

Figures 4, and 5 show that accurate predictions can be obtained all four

emulators with training sets of only 500 or 1000 storms. The differences

between the models are more apparent when we consider computation time

and sensitivity analysis.

Given the 48 hour fit time on a high performance computer for SEPIA

with 1000 training storms and RobustGaSP with 500 training storms, we be-

lieve these emulators are ill-suited for a problem of this size. SEPIA is most

useful when the size of the data is relatively small. In these cases the compu-

tational complexity of a Gaussian Process is not prohibitive. RobustGaSP

did very well emulating TITAN2D, but the size of the ensemble was only 50

runs. RobustGaSP may be better suited for problems where the ensemble

size is small. We note however that even when we trained on a modest 50

storms from SLOSH, RobustGaSP did not outperform the other emulators.

Given the prohibitive computation time of SEPIA and RobustGaSP we

consider BART to be the only real competitor with BASS. We do however

strongly recommend BASS as it provides a few key benefits over BART. First,

it is approximately an order of magnitude faster than BART over all training

sets. Second, sensitivity analysis is important for this application. We would

like to be able to analyze sensitivities over a wide range of prior assumptions

26

on the input parameters. We therefore prefer an emulation method that can

provide us with Sobol indices (BASS). Lastly, BASS does surprisingly well at

out of sample prediction when trained on a small number of storms as seen

in Figure 5. This would prove very useful when emulating a more complex

simulator where only a small ensemble of runs is available.

In future work we would like to confront some of the questions and lim-

itations that arose during this study. One of which is the outliers in RMSE

as seen in Figures 3,6, and 7. We would like to know if these storms live in

a particular region of the parameter space and if they are consistent across

methods. One of the limitations that comes with data of this size is the

storing of large matrices. This resulted in a small number of posterior pre-

dictive samples used for comparison. If storing more samples is not feasible,

we would like convince ourselves that each model has sufficiently converged

and our samples are a good representation of the posterior distributions. For

SEPIA, BASS, and BART, this means an analysis of the MCMC results, and

for RobustGaSP we would like to run the optimization with a number of dif-

ferent starting points to convince ourselves that we are not in a local mode.

In Section 5 we discussed the possibility of reducing the area of predictive

interest so that we can store more posterior samples. This is something we

would like to explore in the future as we have special interest in locations

near power stations.

References

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). Bart: Bayesian

additive regression trees. The Annals of Applied Statistics, 4(1):266–298.

Conti, S. and O’Hagan, A. (2010). Bayesian emulation of complex multi-

output and dynamic computer models. Journal of Statistical Planning

and Inference, 140(3):640 – 651.

Francom, D. and Sansó, B. (2020). BASS: An R package for fitting and per-

27

forming sensitivity analysis of Bayesian adaptive spline surfaces. Journal

of Statistical Software, 94(8):1–36.

Francom, D., Sansó, B., Bulaevskaya, V., Lucas, D., and Simpson, M. (2019).

Inferring atmospheric release characteristics in a large computer experi-

ment using bayesian adaptive splines. Journal of the American Statistical

Association, 114(528):1450–1465.

Gattiker, J., Higdon, D., and Williams, B. (2020a). lanl/gpmsa.

Gattiker, J., Klein, N., Hutchings, G., and Lawrence, E. (2020b). lanl/sepia:

v1.1.

Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed gaussian process

models with an application to computer modeling. Journal of the American

Statistical Association, 103(483):1119–1130.

Gu, M. (2018). Jointly robust prior for gaussian stochastic process in emu-

lation, calibration and variable selection.

Gu, M. and Berger, J. O. (2016). Parallel partial gaussian process emulation

for computer models with massive output. Ann. Appl. Stat., 10(3):1317–

1347.

Gu, M., Wang, X., and Berger, J. O. (2017). Robust gaussian stochastic

process emulation.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer

model calibration using high-dimensional output. Journal of the American

Statistical Association, 103:570–583.

Iooss, Sebastien Da Veiga, A. J. and Pujol, G. (2021). sensitivity: Global

Sensitivity Analysis of Model Outputs. R package version 1.24.0.

Lee, L., Carslaw, K., Pringle, K., and Mann, G. (2012). Mapping the un-

certainty in global ccn using emulation. ATMOSPHERIC CHEMISTRY

AND PHYSICS, 12:9739–9751.

28

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen,

D. V. (2011). Emulation of a complex global aerosol model to quantify

sensitivity to uncertain parameters. Atmospheric Chemistry and Physics,

11(23):12253–12273.

Linkletter, C., Bingham, D., Hengartner, N., Higdon, D., and Ye, K. Q.

(2006). Variable selection for gaussian process models in computer exper-

iments. Technometrics, 48:478 – 490.

Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models

and their monte carlo estimates. Mathematics and Computers in Simula-

tion, 55(1):271–280. The Second IMACS Seminar on Monte Carlo Meth-

ods.

Sparapani, R., Spanbauer, C., and McCulloch, R. (2021). Nonparametric ma-

chine learning and efficient computation with Bayesian additive regression

trees: The BART R package. Journal of Statistical Software, 97(1):1–66.

Zhang, T., Geng, G., Liu, Y., and Chang, H. H. (2020). Application of

bayesian additive regression trees for estimating daily concentrations of

pm2.5 components. Atmosphere, 11(11).

8 Appendix

29

● ●
●

●

●

●

●

●

●
●●

●●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1500000

1600000

1700000

1800000

1900000

1 100 12 23 34 45 58 67 78 89
test storm id

ar
ea

em
●

●

●

sepia

bass

bart

1000 training storms

Figure 13: Flood area predictions for models fit to 1000 storms. Dark red

dots indicate true flood area from SLOSH.

30

●

●●●

●
●

●

●

●
●●

●

●● ●

●

●

●

●●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4e+06

6e+06

8e+06

1e+07

1 100 12 23 34 45 58 67 78 89
test_storm_id

vo
lu

m
e

em
●

●

●

sepia

bass

bart

1000 training storms

Figure 14: Flood volume predictions for models fit to 1000 storms. Dark red

dots indicate true flood volume from SLOSH.

31

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1800000

1840000

1880000

1920000

1 122 162 202 243 283 325 364 41 81
test storm id

ar
ea

em
●

●

bass

bart

3636 training storms

Figure 15: Flood area predictions for models fit to 3636 storms. Dark red

dots indicate true flood area from SLOSH.

32

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1 122 162 202 243 283 325 364 41 81
test_storm_id

vo
lu

m
e em

●

●

bass

bart

3636 training storms

Figure 16: Flood volume predictions for models fit to 3636 storms. Dark red

dots indicate true flood volume from SLOSH.

33

